

Vulnerabilità, attacchi e contromisure nel mondo loT

Giuseppe Augiero

Agenda

- Introduction to the iot ecosystem.
- Threats, Vulnerability and Risks.
- Attacks and attack tools.
 - Device
 - Web.
 - Mobile.
 - Protocols.
- Countermeasures. •

Disclaimer

- purposes.
- Any other use of the informations contained in these slides is prohibited.
- The author assumes no responsibility.

· The informations on these slides should only be used for educational

Introduction

Vulnerabilità, attacchi e contromisure nel mondo loT

IoT

- sensing/actuation capability, a programmability feature, and are uniquely identifiable.
- other business, social or privately relevant information.
- unique identification, data capture and communication, and actuation capability.
- anywhere, anytime, and for anything taking security into consideration."

• "The Internet of Things envisions a self-configuring, adaptive, complex network that interconnects things to the internet through the use of standard communication protocols.

• The interconnected things have physical or virtual representation in the digital world,

The representation contains information including the thing's identity, status, location, or any

• The things offer services, with or without human intervention, through the exploitation of

• The service is exploited through the use of intelligent interfaces and is made available

IoT - Security

IoT: Internet of Things The **S** of IoT means **Security**

A complex ecosystem

- Diversity and architectural heterogeneity.
- Sensor systems and Internet connection.

As security practitioners, we must be able to understand the value of these services and ensure that they are kept available and secure.

Cps vs loT

- process in an "industrial" way.
- It is a subset of IoT.
- that have **no connection to the Internet**.

We can define Cyber-Physical Systems (CPS) as those closed systems that with their architectures, actuators, meters and everything else manage a

The substantial difference with the world of IoT is that cps are closed systems

IoT, by definition, requires an Internet connection in order to provide its service.

IoT classification

- Smart living environment for aging well.
- Smart farming and food security.
- Wearables.
- Smart cities. •
- Smart mobility. •
- Smart water management.
- Smart manufacturing.
- Smart energy.
- Smart buildings and architectures. •

IoT ecosystem

A heterogeneous world !!!

Seven Layer - IoT ecosystem

- We can use these seven levels to explore the composition of the IoT Ecosystem:
 - Physical devices and controllers.
 - Connectivity.
 - Edge computing.
 - Data accumulation. •
 - Data abstraction. •
 - Application.
 - Collaboration and processing. •

Physical Device

- other communications.
- and functional requirements of the product.

· IoT devices often use a real-time operating system (RTOS) for process and memory management, as well as utility services that support messaging and

• The selection of each RTOS is based on the necessary performance, safety

Operating System

(TinyOS	Optimized for low-power embedded systems. A framework that incorporates components that support development of an application- specific operating system. Written in NesC, which supports event-driven concurrency. Refer to http://www.ann.ece.ufl.edu/courses/ee16935_ 10spr/papers/tinyos.pdf.
	Contiki	Supports IP, UDP, TCP, and HTTP, as well as 6loWPAN and CoAP. Designed for operation in low-power systems. Supports link layer encryption for 802.15.4 communications.
	Windows 10 IoT	Supports bitlocker encryption and secure boot. Includes DeviceGuard and CredentialGuard features. Supports updates through Windows Server Update Service (WSUS).
9	QNX (Neutrino)	Operating System often used in vehicle infotainment systems. Includes security features such as sandboxing and fine-grained access controls.
C	Ubuntu Core	A read-only root file system, security sandbox for applications and separate (independent) update of applications from the OS. Allows categorization of applications as trusted or untrusted and supports Unified Extensible Firmware Interface (UEFI) secure boot. Learn more at https://developer.ubuntu.com/en/snappy/guides/security- whitepaper.
	OpenWRT	A popular open source OS used often in wireless routers.
	GreenHills IntegrityOS	A higher-assurance operating system.

Mantis	Embedded operating systems for wireless sensor platforms. Includes a kernel, scheduler, and networking stack. Supports remote update and remote login. Incorporates a sleep mode for power savings. Refer to: Sha, Carlson, et al. <i>Mantis OS: An Embedded</i> Multithreaded <i>Operating System for Wireless Micro Sensor Platforms. ACM Digital Library</i> .	
Nano-RK	Tailored for surveillance and environmental monitoring applications. So-RK Supports energy-efficient mode of operation and preemptive multitaskin Runs on 2 KB RAM and 18 KB ROM.	
Lite-OS	Supports a wirelessly accessible shell and a remote debugging system. Runs on 10 KB.	
FreeRTOS	A general purpose RTOS. Supports add-on TCP networking and secure communications (TLS). Implementers can use cryptographic libraries such as WolfSSL with FreeRTOS.	
SapphireOS	Supports mesh networking and device discovery. Includes Python tools and a RESTful API server.	
BrilloOS	Runs on 32 to 64 MB RAM and optimized for consumer/home-based IoT devices.	
uCLinux/FAQ.shtml.		
ARM Mbed OS	RM Mbed Incorporates a supervisory kernel (uVisor) that supports creation of isolated security domains on ARM Cortex M3, M4, and M7 MCUs with a Memory Protection Unit (MPU). Refer to https://www.mbed.com/en/technologies/security/uvisor/.	
RIOT OS	Runs on 8-, 16-, and 32-bit platforms. Includes TCP/IP stack and supports 6LoWPAN, IPv6, UDP, and CoAP. Supports multithreading and requires 1.5 KB RAM and 5KB ROM.	
VxWorks	Here are the two versions (VxWorks and VxWorks+). Includes optional add-on security profile with secure partitioning, secure boot, secure runtime, loader, and advanced user management. Supports encrypted containers and secure networking.	
LynxOS	Supports TCP/IP, IPv6, and cellular communications. Supports 802.11 WiFi, ZigBee, and Bluetooth. Includes encryption support, access controls, and auditing and account management features.	
Zephyr	Open source designed for resource-constrained systems. Project included a heavy focus on secure development practices. Implements nano-kernel and micro-kernel and supports Bluetooth, Bluetooth-LE, and 802.15.4 6LoWPAN.	

Memories

- Configuration and storing of the secure parameters is a very critical point.
- and communicate with the outside world.
- again.
- Each of these problems has one or more security implications. •

 Configuration settings that are applied to an operating system are often lost to the power cycle without battery-powered RAM or other persistent memory. In many cases, a configuration file is kept in persistent memory to provide the various networks and other settings necessary to allow the device to perform its functions

 It is very important to manage the root password, the other account passwords and the cryptographic keys stored on the devices when the device is turned off and on

Connectivity: Transport Protocol

- IoT use of Tcp and Udp.
- While tcp is used for Rest or for MQTT, the real protagonist is udp.
- **DTLS** (udp) is used to guarantee privacy and security. •

What are DTLS and MQTT?

Connectivity: Network Protocol

- devices operate within.
- data rates for devices with very limited form factor.

• IPv4 and IPv6 both play a role at various points within many IoT systems.

 IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) support the use of IPv6 in the network-constrained environments that many IoT

6LoWan has been designed to support wireless internet connectivity at lower

Com. Protocol

Communication Protocol	Description
GPRS	All data and sig SIM cards are us
GSM	A Time Divisio are used to store
UMTS	Signaling and us algorithm.
CDMA	Code Division M
Long Range Wide Area Network (LoRaWAN)	Supports data ra three keys: A un security, and de
6LoWPAN	Low-power wire automatic devic provision bootst includes an auth Authentication device blacklist.
ZigBee	ZigBee uses 802 ZigBee network security services device managen
Thread	Thread uses 802 to 250 devices w Authenticated H commissioner an network parame
SigFox	Operates in the (Europe) ranges messages per da
Near Field Communications (NFC)	Provide limited protocol. Short r
Wave 1609	Prevalent in CV support attribut

© Giuseppe Augiero - 10 aprile 2020 - Ntop - Seminari CyberSecurity - Università di Pisa - talk@augiero.it

nals are encrypted using the **GPRS Encryption Algorithm (GEA)**. sed to store identities and keys.

on Multiple Access (TDMA)-based cellular technology. SIM cards e identities and keys.

ser data are encrypted using a 128-bit key and the KASUMI

Multiple Access cellular technology. No SIM cards are used.

ates between 0.3 Kbps and 50 Kbps. LoRAWAN networks use nique network key, unique application key for end-to-end evice-specific key.

wireless technologies used in many environments.

reless **Personal Area Network** (**PAN**) designed to support be network joining using a LoWPAN bootstrapping server to strap information to 6LoPAN devices. A 6LoWPAN network hentication server supporting mechanisms such as **Extensible Protocol (EAP)**. Bootstrap server can also be configured with a

2.15.4 for the physical and **Medium Access Control (MAC)** layers. As can be configured in star, tree, and mesh topologies. ZigBee is provide key establishment, key transport, frame protection, and ment.

2.15.4 for the physical and MAC layers. Supports connection of up within a network. Uses AES encryption. Uses a **Password Key Exchange (PAKE)**. New nodes join a network using a and DTLS to create a pairwise key that can be used to encrypt eters.

Ultra Narrow Band (UNB) in the 915 MHz (US) and 868 MHz s. Devices sign messages with private keys. There is a limit of 140 ay per device, and SigFox supports anti-replay protections.

security protections. Often used in connection with another range support.

v communications. Relies heavily on IEEE 1609.2 certificates that te tagging.

Threats, Vulnerability and Risks

Vulnerabilità, attacchi e contromisure nel mondo loT

Essential security components

- Confidentiality: keep sensitive information secret and protected from disclosure.
- **Integrity:** ensuring that information is not changed, accidentally or intentionally, • without being detected.
- Authentication: ensure that the source of the data comes from a known identity or endpoint.
- Non-repudiation: ensuring that an individual or a system cannot later deny • having performed an action.
- Availability: ensure that information and capabilities are available when needed.

Threats

- from IoT devices.
- sectors.
- resilience or to the degradation of the computing platform.

 IoT threats include all threats related to the management and manipulation of information to management, application, sensor and control data sent to and

 IoT devices are subject to the same physical security, hardware, software quality, environment, supply chain and many other threats common to security

· In addition, IoT devices are subject to threats of physical reliability and

Vulnerability

- integration or operation of a system or device.
- automatic updates on newly discovered vulnerabilities.
- Vulnerabilities are shortcomings.

• Vulnerability is the term we use to identify a weakness in the design,

 Vulnerabilities are always present and countless new ones are discovered every day. Many online databases and web portals now provide us with

Threat actor

Risks vs Vulnerabilities

- activity or event.
- motivations of an attacker.
- loss when it is exploited.
- Not all vulnerabilities will be known in advance. We call them zero-day.

• **Risk exposure** is the measure of potential future **loss** resulting from a specific

• It is different from vulnerability, because it depends on the probability of a particular event, attack or condition and has a strong connection with the

 Vulnerability does not directly invoke impact or probability, but it is innate weakness itself. It can be easy or difficult to exploit or cause a small or large

Risk management

- the following:
 - Impact and overall cost of a compromise.
 - How valuable the target can be for attackers.

 - penetration tests).

• Risk can be managed through threat modeling, which allows you to ascertain

Predicted skills and motivations of the attackers (based on the threat model).

• Preliminary knowledge of a system or device vulnerabilities (for example, those identified in public notices, discovered during threat modeling and

Residual risk

- residual amount of risk, generally called "residual risk".
- compensation mechanisms, such as insurance.

Since mitigation of security controls is never perfect, we still have a small

Residual risk is often accepted as it is or offset by the application of other risk

Types of attacks on IoT devices

- There are many types of attacks but the most significant for the IOT world are:
 - Wired and wireless scanning and mapping attacks.
 - Protocol attacks.
 - Eavesdropping attacks (loss of confidentiality). •
 - Cryptographic algorithm and key management attacks.
 - Spoofing and masquerading (authentication attacks).
 - Operating system and application integrity attacks.
 - Denial of service and jamming.
 - Physical security attacks (for example, tampering and interface exposures). •
 - Access control attacks (privilege escalation).

Ransomware

- We can translate the concept of Ransomware into the IoT world.
- medical equipment.
- Examples: •
 - A pacemaker that gives short non-lethal shocks.
 - A car that can't get out because the garage doors don't open.
 - Front door that opens when we are on vacation.

Imagine that ransom attacks are being carried out on physical infrastructure or

Attack campaigns

hit.

• Generally only one type of attack is ever used.

- cost and probability of success.

• For how many attacks we can define or imagine, in reality the number of types of attacks is always greater and often the attacks are customized for the target to be

• An attack is the set of a campaign of sub-attacks grouped in sequence or other activities, each carefully chosen by a variety of intelligence methods (human social engineering, profiling, scanning, Internet research, and familiarity with the system).

Each activity designed to achieve its immediate goal has a certain level of difficulty,

Attack surface

- source.
- This input source can take place via hardware, via software or wirelessly.
- In general, the greater the attack surface contained in a device, the greater the probability of a compromise.

Attack surfaces are entry points into IoT device.

- •
- unwanted actions.

Attack surface refer to the many ways in which a device can be compromised via an input

Each attack surface discovered will have an associated risk, probability, and impact.

Attack surfaces are threats that have the potential to adversely affect a device to perform

Threats modeling

- before the test takes place or before the software is written.
- This exercise is known as threat modeling.
- Scoring System (CVSS).

• To find out each attack surface, theoretical use cases must be considered

• There are different threat classification systems, depending on the sector; however, the most common are **DREAD** and the Common Vulnerability

DREAD

- variables:
 - **Potential:** how great is the damage if exploited?
 - **Reproducibility:** how easy is it to reproduce the attack?
 - **Ease of attack:** how easy is it to exploit the attack?
 - Users affected: how many users are exposed to risk?
 - **Detectability:** How easy is it to find vulnerability?

• A threat classification system must be able to quantify the following risk

Attacks and attack tools

Vulnerabilità, attacchi e contromisure nel mondo IoT

How can I attack a system?

Just Thinking Outside The Box

Vulnerabilità, attacchi e contromisure nel mondo loT

Firmware

- start analyzing its contents before other pieces of device components.
- and disassembling its contents can be trivial.

• Firmware is the control center of IoT devices, which is why we may want to

• Depending on the production sector of IoT device, obtaining a firmware image

Informations offered by the firmware

- By analyzing the firmware we can obtain:
 - Passwords.
 - API tokens.
 - API endpoints (URLs).
 - Vulnerable services.
 - Backdoor accounts.
 - Configuration files.
 - Source code.
 - Private keys.
 - How data is stored.

Glitch

- What do we do on the serial we have no console?
- **Glitch** is a way of causing failures in the system you are working on.
- Example (**NAND glitching**): •
 - and the kernel is about to boot.
 - mode, thus bypassing the authentication system.
- bypassing crypto and more.

 To access the bootloader, one of the I/O pins of our device's NAND flash is short-circuited on a GND pin. Note that this short circuit must be done at the moment the bootloader has started

• Once the boot procedure has been interrupted, it will be possible to start the system in single

However, you can also use power and voltage glitching techniques to perform things such as

Vulnerabilità, attacchi e contromisure nel mondo IoT

© Giuseppe Augiero - 10 aprile 2020 - Ntop - Seminari CyberSecurity -

Bruce Schneier

- **Cryptography is harder than it looks:**
 - Primarily because it looks like math...

- Complexity is the worst enemy of security:
 - other systems, configuration options, and vulnerabilities there are.

The more complex a system is, the more lines of code, interactions with

Owasp

- technologies in the field of web application security.
- as a non-profit organization in Belgium under the name of OWASP Europe VZW.
- Owasp offers:
 - Tools and Resources
 - Community and Networking
 - Education & Training

· The Open Web Application Security Project (OWASP) is an online community that produces freely-available articles, methodologies, documentation, tools, and

• The OWASP Foundation, a non-profit organization (in the USA) established in 2004, supports the OWASP infrastructure and projects. Since 2011, OWASP is also registered

Web App Security Testing

- software vulnerabilities.
- product.

• The right methodology must be defined to carry out the correct search for

• The identical techniques used for a penetration test can help us analyze an IoT

Owasp methodologies

- Introduction and objectives.
- Information gathering.
- Configuration and deployment management testing. •
- Identity management testing. •
- Authentication testing. •
- Authorization testing. •
- Session management testing.
- Input validation testing.
- Error handling.
- Cryptography.
- Business logic testing. •
- Client-side testing. •

First Step

- The tools that we can use are varied and not all necessary.
- The first step is to choose the browser to use:
 - A good choice is to use Firefox as it offers countless add-ons.
 - The other browsers are not to be excluded. It may be helpful to use Internet Explorer for sites with ActiveX components.

Browser Plugin

- Some (basic) components to install are:
 - Wappalyzer.
 - FoxyProxy.
 - Cookie Manager.

Burp Suite

Params Sta	t & Length	MINE type	Title	Comment	Time requ	
SUL	IE					
AL	Burp Suit	e Profession	al v1.5.11			
	Licensed License (to LarryLau opires: Dec	3. 2099			
	- In the second	license here				
	Copeans	incense key				

Burp Suite - Live Demo

- Brute force Basic Authentication
 - - (Challenge 3)

CA: http://burp/cert

<u>http://pentesteracademylab.appspot.com/lab/webapp/basicauth</u>

Burp Scanner

This listing contains the definitions of all issues that can be detected by Burp Scanner.

Name	Typical severity	Type index
OS command injection	High	0x00100100 🔺
SQL injection	High	0x00100200
SQL injection (second order)	High	0x00100210
ASP.NET tracing enabled	High	0x00100280
File path traversal	High	0×00100300
XML external entity injection	High	0x00100400
LDAP injection	High	0x00100500
XPath injection	High	0×00100600
XML injection	Medium	0x00100700
ASP.NET debugging enabled	Medium	0x00100800
HTTP PUT method is enabled	High	0×00100900
Out-of-band resource load (HTTP)	High	0x00100a00
File path manipulation	High	0x00100b00
PHP code injection	High	0x00100c00
Server-side JavaScript code injection	High	0x00100d00
Perl code injection	High	0x00100e00
Ruby code injection	High	0x00100f00
Python code injection	High	0x00100f10
Expression Language injection	High	0x00100f20
Unidentified code injection	High	0x00101000
Server-side template injection	High	0×00101080
SSI injection	High	0x00101100
Cross-site scripting (stored)	High	0×00200100
HTTP request smuggling	High	0x00200140
Web cache poisoning	High	0x00200180
HTTP response header injection	High	0x00200200
Cross-site scripting (reflected)	High	0x00200300
Client-side template injection	High	0x00200308
Cross-site scripting (DOM-based)	High	0x00200310
Cross-site scripting (reflected DOM-based)	High	0x00200311
Cross-site scripting (stored DOM-based)	High	0x00200312
JavaScript injection (DOM-based)	High	0×00200320
JavaScript injection (reflected DOM-based)	High	0x00200321
JavaScript injection (stored DOM-based)	High	0x00200322
Path-relative style sheet import	Information	0×00200328
Client-side SQL injection (DOM-based)	High	0x00200330
Client-side SQL injection (reflected DOM-based)	High	0x00200331
Client-side SQL injection (stored DOM-based)	High	0x00200332
WebSocket URL poisoning (DOM-based)	High	0x00200340
WebSocket URL poisoning (reflected DOM-based)	High	0x00200341
WebSocket URL poisoning (stored DOM-based)	High	0x00200342
Local file path manipulation (DOM-based)	High	0x00200350
Local file path manipulation (reflected DOM-based)	High	0x00200351
Local file path manipulation (stored DOM-based)	High	0x00200352
Client-side XPath injection (DOM-based)	Low	0x00200360
Client-side XPath injection (reflected DOM-based)	Low	0x00200361
Client-side XPath injection (stored DOM-based)	Low	0x00200362
Client-side JSON injection (DOM-based)	Low	0x00200370
Client-side JSON injection (reflected DOM-based)	Low	0x00200371
Client-side JSON injection (stored DOM-based)	Low	0x00200372
Flash cross-domain policy	High	0x00200400
Silverlight cross-domain policy	High	0x00200500
Cross-origin resource sharing	Information	0×00200600

00100	4	
00200		
00210		
00280		
00300		
00400		
00500		
00600		
00700		
00800		
00900		
00a00		
00600		
00c00		
00d00		
00e00		
00f00		
00f10		
00f20		
01000		
01080		
01100		
00100		
00140		
00180		
00200		n
00300		4
00308		
00310		
00311		
00312		
00320		
00321		
00322		
00328		
00330		
00331		
00332		
00340		
00341		
00342		
00350		
00351		
00352		
00360		
00361		
00362		
00370		
00371		
00372		
00400		
00500		
00600	1	

Cross-site scripting (stored DOM-based)

Description

Stored DOM-based vulnerabilities arise when user input is stored and later embedded into a response within a part of the DOM that is then processed in an unsafe way by a client-side script. An attacker can leverage the data storage to control a part of the response (for example, a JavaScript string) that can be used to trigger the DOM-based vulnerability.

DOM-based cross-site scripting arises when a script writes controllable data into the HTML document in an unsafe way. An attacker may be able to use the vulnerability to construct a URL that, if visited by another application user, will cause JavaScript code supplied by the attacker to execute within the user's browser in the context of that user's session with the application.

The attacker-supplied code can perform a wide variety of actions, such as stealing the victim's session token or login credentials, performing arbitrary actions on the victim's behalf, and logging their keystrokes.

Users can be induced to visit the attacker's crafted URL in various ways, similar to the usual attack delivery vectors for reflected cross-site scripting vulnerabilities.

Burp Suite automatically identifies this issue using static code analysis, which may lead to false positives that are not actually exploitable. The relevant code and execution paths should be reviewed to determine whether this vulnerability is indeed present, or whether mitigations are in place that would prevent exploitation.

Remediation

The most effective way to avoid DOM-based cross-site scripting vulnerabilities is not to dynamically write data from any untrusted source into the HTML document. If the desired functionality of the application means that this behavior is unavoidable, then defenses must be implemented within the client-side code to prevent malicious data from introducing script code into the document. In many cases, the relevant data can be validated on a whitelist basis, to allow only content that is known to be safe. In other cases, it will be necessary to sanitize or encode the data. This can be a complex task, and depending on the context that the data is to be inserted may need to involve a combination of JavaScript escaping, HTML encoding, and URL encoding, in the appropriate sequence.

References

Cross-site scripting

Vulnerability classifications

- <u>CWE-79</u>: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
- <u>CWE-116: Improper Encoding or Escaping of Output</u>
 <u>CWE-159: Failure to Sanitize Special Element</u>

Typical severity

High

Type index 7

Owasp Zap - Live Demo

Mobile

Vulnerabilità, attacchi e contromisure nel mondo loT

Mobile methodologies

- We can apply 4 different methodologies:
 - used in the next phase.
 - data can be manipulated from the client side.
 - XMPP protocol data.
 - brought to light as a result of API testing.
- Mobile Application Security Verification Standard (MASVS).

Application mapping: Application mapping pertains to the application's logic and the application's business function. Think of application mapping as gathering information about the application to be

Client-side attacks: Client-side attacks pertain to data being stored in the application and how that

Network attacks: Network attacks pertain to network layer concerns such as SSL/TLS or maybe

Server attacks: Server attacks apply to API vulnerabilities and backend server misconfigurations

This allows Java analysis tools to analyze Android applications.

- python3 O m enjarify. main yourapp.apk
- https://github.com/google/enjarify •

Enjarify is a tool for translating Dalvik bytecode to equivalent Java bytecode.

Vulnerabilità, attacchi e contromisure nel mondo loT

Communication

- and acts.

Almost all IoT devices interact with other devices to exchange informations

• It is extremely essential to know the wireless protocols used by IoT devices and the security issues affecting them, in order to effectively test IoT devices.

Wireshark

$\Theta \Theta \Theta$			🔀 en1: Capturing – Wireshark	
<u>File Edit V</u> iew	<u>Go</u> <u>C</u> apture <u>A</u> nalyz	e <u>S</u> tatistics <u>H</u> elp		
📑 🕷 🚳 🚭	[🕍 🗁 🔛 🗙	r 🖓 📇 🔄 🗇	🗼 🏟 🛧 🕹 📃 🛃 Q, Q, Q, 🕅 🌌 🖺 🎇 💥 🧭	
Filter: tcp.port ed	q 80		📑 🕂 Expression 🌭 Clear 🖋 Apply	
No Time	Source	Destination	Protocol Info	
53 6.916738	207.142.131.235	192.168.1.30	TCP 80 > 65155 [ACK] Seq=1 Ack=450 Win=6864 Len=0 TSV=3117138150 TSER=710995743	
54 6.961542	207.142.131.235	192.168.1.30	HTTP HTTP/1.0 304 Not Modified	
55 6.961666	192.168.1.30	207.142.131.235	TCP 65155 > 80 [ACK] Seq=450 Ack=422 Win=65535 Len=0 TSV=710995744 TSER=3117138194	
56 6.972635	192.168.1.30	207.142.131.235	TCP 65155 > 80 [FIN, ACK] Seq=450 Ack=422 Win=65535 Len=0 TSV=710995744 TSER=3117138194	
59 7.239480	207.142.131.235	192.168.1.30	TCP 80 > 65155 [FIN, ACK] Seq=422 Ack=451 Win=6864 Len=0 TSV=3117138473 TSER=710995744	
60 7.254723	192.168.1.30	207.142.131.228	TCP 65156 > 80 [SYN] Seq=0 Len=0 MSS=1460 WS=0 TSV=710995745 TSER=0	74
62 7 522102	207.142.131.220	207 142 131 228	TCP 65156 $>$ 80 [ACK] Seq=0 ACK=1 Win=5792 Len=0 M55=1420 TSV=167437131 TSER=710995 TCD 65156 $>$ 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0 TSV=710995745 TSED=187437131	/4
63 7.523120	192,168,1,30	207.142.131.228	HTTP GET /wikipedia/en/f/fb/Wsicon48.png HTTP/1.1	
64 7, 794383	207.142.131.228	192, 168, 1, 30	TCP 80 > 65156 [ACK] Sec=1 Ack=375 Win=6864 Len=0 TSV=187437403 TSER=710995745	
65 7, 796209	207.142.131.228	192.168.1.30	HTTP HTTP/1.0 304 Not Modified	
66 7.796322	192.168.1.30	207.142.131.228	TCP 65156 > 80 [ACK] Seq=375 Ack=338 Win=65535 Len=0 TSV=710995746 TSER=187437404	
67 7.797664	192.168.1.30	207.142.131.228	TCP 65156 > 80 [FIN, ACK] Seq=375 Ack=338 Win=65535 Len=0 TSV=710995746 TSER=187437404	
68 8.039561	207.142.131.235	192.168.1.30	TCP 80 > 65155 [FIN, ACK] Seq=422 Ack=451 Win=6864 Len=0 TSV=3117139274 TSER=710995744	
69 8.039704	192.168.1.30	207.142.131.235	TCP 65155 > 80 [ACK] Seq=451 Ack=423 Win=65535 Len=0 TSV=710995746 TSER=3117139274	
70 8.065048	207.142.131.228	192.168.1.30	TCP 80 > 65156 [FIN, ACK] Seq=338 Ack=376 Win=6864 Len=0 TSV=187437674 TSER=710995746	
71 8.868153	207.142.131.228	192.168.1.30	TCP 80 > 65156 [FIN, ACK] Seq=338 Ack=376 Win=6864 Len=0 TSV=187438478 TSER=710995746	
/2 8,868306	192,168,1,30	207.142.131.228	TCP 65156 > 80 [ACK] Sed=376 ACK=339 W1n=65535 Len=0 TSV=710995748 TSER=187438478	
▶ Frame 47 (74 byte	es on wire, 74 bytes cap	tured)		
Ethernet II. Src:	00:0d:93:ef:49:30 (00:	0d:93:ef:49:30). Dst: 00:	: 14: bf: 76: 2e: ca. (00: 14: bf: 76: 2e: ca)	
D Internet Protocol	Src: 192 168 1 30 /19	2 168 1 30) Det: 207 142	2 131 235 / 207 142 131 235	
Transmission Cont	t, Sit. 192,100,1,50 (19	GEIEE (GEIEE) Det Dort	(207, 142, 151, 25)	
V Transmission Cont	trol Protocol, Src Port:	65155 (65155), DST POFT:	: 80 (80), Seq: 0, Len: 0	
0000 00 14 bf 76 2e	e ca 00 0d 93 ef 49 30	08 00 45 00v	. I0 E.	
0010 00 3c d3 09 40	00 40 06 52 72 c0 a8	01.1ecf8e .<@.@.Rr ∞	Г	ſ
0020 83 eD Te 83 00	0 00 02 03 18 27 00 00	00 00 a0 02P' 03 00 01 01		
0040 08 0a 2a 60 ef	1f 00 00 00 00 00	., *, TO TO TO		

en1: <live capture in progress> File: /var/tmp/ether8yLJIBHbj9 14 KB

P: 80 D: 22 M: 0

Zig Bee

- and resource consumption.
- What do we need:

 - **Software:** KillerBee
 - https://github.com/riverloopsec/killerbee

ZigBee is one of the common wireless protocols used in IoT devices because of its ability to form mesh networks and perform operations with low power

Hardware: Atmel RzRaven USB Stick flashed with KillerBee firmware

- thus significantly saving battery consumption.
- What do we need:
 - Hardware: Dongle Bluetooth
 - **Software:** Blue Hydra or HCI Utils, Ubertooth utils, Gattacker

• BLE is designed for devices with resource and power constraints which BLE effectively solves by providing short bursts of long range radio connections,

Countermeasures

Vulnerabilità, attacchi e contromisure nel mondo loT

lot devices connected to the Internet

- Does the device you are using really require internet access?
- Use vpn and avoid, when possible, triangulation systems or external TLS tunnels.
- Border on the devices (**vlan**).
- Net division between outside and inside of the network.

Metrics

- Adopt network metrics.
- Deep Inspection.
- Analysis of the network guidelines (cum grano salis).

• Ntpong is an excellent tool.

n	●br0 ▼ \$	2.00 Mbit/s 11.80 Mbit/s	🐴 3 2 Rows 🗛 🛛 23 🔜 161 🗔	22 Devices 231 Flows		Q Search	Ar 11
Dashboard	Dashboard Talkers	s Hosts Ports	ts Applications				
A ' Alerts				Top Flow Talkers	3		
Flows Hosts		AXIS M3097 - AO	CCCREEDERIZE			10 20. 50 32	
interlace ¢ Settings							
Second ciper		Бантаран				ANIS 214 - 004080920002	
						10 20. 50 25	
						10.20.30.220	
				Refresh frequency: 5 Seconds - Live u	ipdate: III 🔳		
	ntoping Community Edition w	4.1.200831 O		© 1998-20 - ntop.org		Q 22:44:33 +0200 U	ptime: 3 Days, 12-20-21

Security & Policy

- Protect external access to the lot device with a **firewall** (L3 / L7).
- Do not allow access to unnecessary IoT device services.

Always keep your device updated.

Authentication

• Use different credentials for different devices.

lot device to avoid

- Avoid products with these characteristics:
 - not support TLS.
 - too little computing power.
 - completely depend on an external cloud.
 - rebranded products.
 - (do not support lpv6).
- Avoid products you don't need.

• When you can turn off your device.

Conclusions

Vulnerabilità, attacchi e contromisure nel mondo loT

IoT

- confidentiality of data.
- Pervasive presence of the IoT ecosystem.
- New privacy approaches for credentials.
- New network traffic will be required.
- Our information will be increasingly distant from us.

· The world of IoT opens up new challenges regarding the privacy and

The biggest challenge in IoT security is finding ways to defend against tomorrow's attacks today, as many devices and systems are expected to work for years or decades in the Future.

Thanks for the attention!

Buona Pasqua

Vulnerabilità, attacchi e contromisure nel mondo loT

Giuseppe Augiero Email: talk@augiero.it Website: augiero.it